

1.- Relational model operations

1.- What operations do we need to do to get the Names of the employees with a salary bigger than 20

table 1

primarykey	name	age	group	title
1	maria	7	a1	admon
2	candela	9	b4	director
3	fernando	11	c3	eng

table 2

primary key	date	salaries
1	01/10/2018	10
2	01/10/2017	45
3	01/11/2018	30

2.- What is the hierarchy tree in this html code

<property>

<document>

<author> paper database </author>

</document>

<film>

<author> paper database </author>

</film>

</property>

3.- Networks and matrices

3.1.- Define the adjacency matrix of the following network. The **adjacency matrix** represents a network, calculate the matrix of the following network

3.2 Sum A+B

3.3 Draw the corresponding network C

3.4 Calculate matrix D= transposed of C

3.5 Draw the corresponding network D. What is the effect of the operation in the graph?

3.5 We define the **in-degree** as the number of arrows aiming a node and **out-degree** the outcome links

Outdegree: outdegree for node 3 is _____, which we obtain by summing the number of non-zero entries in the 3rd row.

Indegree: the indegree for node 3 is _____, which we obtain by summing the number of non-zero entries in the 3rd column